
 Defect flows in minimal models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP11(2009)057

(http://iopscience.iop.org/1126-6708/2009/11/057)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 01/04/2010 at 13:32

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/11
http://iopscience.iop.org/1126-6708/2009/11/057/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
1
1
(
2
0
0
9
)
0
5
7

Published by IOP Publishing for SISSA

Received: September 3, 2009

Accepted: October 8, 2009

Published: November 12, 2009

Defect flows in minimal models

Márton Kormos,a,b,c Ingo Runkela,1 and Gérard M.T. Wattsa

aDept. of Mathematics, King’s College London,

Strand, London WC2R 2LS, U.K.
bInternational School for Advanced Studies (SISSA),

Via Beirut 4, 34014 Trieste, Italy
cIstituto Nazionale di Fisica Nucleare, Sezione di Trieste,

Via Beirut 2-4, 34131 Trieste, Italy

E-mail: kormos@sissa.it, Ingo.Runkel@kcl.ac.uk, Gerard.Watts@kcl.ac.uk

Abstract: In this paper we study a simple example of a two-parameter space of renormal-

isation group flows of defects in Virasoro minimal models. We use a combination of exact

results, perturbation theory and the truncated conformal space approach to search for fixed

points and investigate their nature. For the Ising model, we confirm the recent results of

Fendley et al. In the case of central charge close to one, we find six fixed points, five of

which we can identify in terms of known defects and one of which we conjecture is a new

non-trivial conformal defect. We also include several new results on exact properties of per-

turbed defects and on the renormalisation group in the truncated conformal space approach.

Keywords: Conformal and W Symmetry, Boundary Quantum Field Theory, Renormal-

ization Group, Integrable Field Theories

ArXiv ePrint: 0907.1497

1E-mail from October 2010: Ingo.Runkel@uni-hamburg.de.

c© SISSA 2009 doi:10.1088/1126-6708/2009/11/057

mailto:kormos@sissa.it
mailto:Ingo.Runkel@kcl.ac.uk
mailto:Gerard.Watts@kcl.ac.uk
http://arxiv.org/abs/0907.1497
mailto:Ingo.Runkel@uni-hamburg.de
http://dx.doi.org/10.1088/1126-6708/2009/11/057


J
H
E
P
1
1
(
2
0
0
9
)
0
5
7

Contents

1 Introduction 2

2 Topological, factorising and conformal defects 4

2.1 Topological defects and defect fields 4

2.2 Factorising defects 6

2.3 Conformal defects 7

2.4 Defect perturbations 8

2.4.1 Translation invariance 9

2.4.2 Commutation with a subset of topological defects 10

3 Exact results 11

3.1 The chiral perturbations 11

3.2 The factorising component of any IR fixed point 11

3.3 The Ising case 12

4 Perturbative analysis 14

5 Truncated conformal space approach for defects 17

5.1 The TCSA Hamiltonian for defects 17

5.2 Finite-size scaling in TCSA 19

5.3 Identification of conformal defects using TCSA 20

6 TCSA results 21

6.1 The critical Ising model 22

6.2 Minimal models with p > 3 23

6.2.1 Chiral perturbations 23

6.2.2 The third quadrant: κl < 0, κr < 0 24

6.2.3 The second and fourth quadrants: κl and κr of opposite signs 26

6.2.4 The first quadrant κl > 0, κr > 0 27

7 Conclusion 28

A Defect operators commuting with D(r,1) 30

B The renormalisation group and finite-size scaling relations in TCSA 32

C Some details of the TCSA algorithm 33

D Position invariance of the spectrum for a chirally perturbed defect 34

– 1 –



J
H
E
P
1
1
(
2
0
0
9
)
0
5
7

1 Introduction

By a defect in a two-dimensional conformal field theory we mean a line of inhomogeneity

on the surface, where the expectation values of fields are allowed to be discontinuous or

even singular. An example would be the continuum limit of a lattice model where the

couplings are altered from their normal values along a line.

A typical defect is not invariant under a scale transformation and this leads to an action

of the renormalisation group on the space of defects. The fixed points of the renormalisation

group are clearly of interest and these are the conformal defects. The problem of studying

conformal defects is equivalent to studying general conformal boundary conditions of a

folded model [30]. Even if one starts from a rational conformal field theory, the folded

model will typically no longer be rational with respect to the diagonal symmetry preserved

by the boundary condition corresponding to the defect. This means that the representation

theoretic methods used to construct the bulk theory cannot be applied to get a handle

on the defect itself. There are, however, two distinguished subsets of conformal defects

which are known as topological (or purely transmitting) defects and factorising (or purely

reflecting defects), which are much easier to study than the general case.

Defects have an obvious generalisation to interfaces between different conformal field

theories, possibly of different central charge. A particular model may, in fact, be simple

enough to allow one to classify all conformal defects or interfaces; this is the case for

defects in the Lee-Yang model [26] and in the critical Ising model [24], and for interfaces

between the Lee-Yang and the Ising model [26]. Particular defects may preserve a rational

sub-algebra in the folded model [12, 26, 27], or a semi-classical analysis may suggest the

existence of distinguished conformal defects and interfaces, for example in a WZW model

for a given group [5] or between such WZW models at different levels [14].

One may also think of interfaces as ‘symmetries’ which relate the properties of the two

theories they link. For example, interfaces provide group symmetries and order-disorder

dualities [16], they relate different renormalisation group flows of boundary conditions [22],

there is a preferred interface joining the UV and IR fixed point of a given quantum field

theory [7], and they can be used as spectrum generating symmetries in string theory [3].

Interfaces can also be related to tunnelling in the quantum Hall effect [11]. Defects (and

also interfaces) can be composed by placing the defect lines parallel to each other and

letting their distance tend to zero [4, 6, 17, 25, 29]. This process may or may not be

singular, but if it can be defined then it describes an algebraic structure on the space of

conformal field theories which deserves more investigation.

In this paper we study a very simple example of a two-parameter space of renormali-

sation group flows. We identify the fixed points of these flows with the aim of finding new

non-trivial conformal defects. The starting point for our flows is a particular topological

defect D in the Virasoro minimal model M(p, p + 1) and the two parameters of our space

are λl and λr, describing perturbations of D. We arrive at the following conjecture for the

space of flows for p > 3 in the neighbourhood of this defect, shown in figure 1. Note that,

in this figure, λl and λr represent renormalised coupling constants. An example of such

coupling constants are the coupling constants used in the TCSA scheme in section 5 taken

at some fixed finite cut-off.
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Figure 1. The proposed flows for the perturbation (2.23) for p > 3. The pointD is the (1, 2)-defect.

The possible endpoints are: I — the identity defect, D′ — the (2, 1)-defect, F — a factorising defect

given by the sum
∑p−1

r=1
||r, 1〉〉〈〈r, 1 || of p−1 conformal boundary conditions, and finally C — the

new conformal defect. For details see the body of the paper.

Four of the fixed points (labelled D′ and I) can be identified exactly and are topological

defects; one can be studied numerically and we conjecture that it is a factorising defect F ;

finally we conjecture the existence of a new non-trivial conformal defect C which we study

both numerically and perturbatively.

A renormalisation group analysis in the case of WZW models showed a similar non-

trivial fixed point for λl = λr 6= 0, which is a good candidate for a non-topological conformal

defect [5].

The case p = 3 has recently been studied in [11] and solved exactly by relating it to a

free fermionic model. The space of RG flows is qualitatively different but the fixed points

corresponding to I, C,D′ and F are present in this model and agree with our conjectures

for the exact forms of I, F and D′. Our numerical calculations agree with the results

of [11], confirming the validity of our numerical method.

Unfortunately, we have so far been unable to calculate exactly or numerically other

characteristic quantities of the new conformal defect C, such as its g-value [1] (defined

to be that of the corresponding conformal boundary in the folded model) or its reflection

coefficient [26]. However, we can calculate the g-value perturbatively for large values of p.

This paper is organised as follows. In section 2 we collect the properties of topological

defects needed in the subsequent analysis. Section 3 contains several exact results on

defects, some new to this paper. Section 4 contains the renormalisation group analysis of

the perturbation for large p and identifies the new conformal defect as a perturbative fixed

point. The numerial truncated conformal space approach used to support the proposed

flows of figure 1 is described in section 5 with the results given in section 6. Finally,

section 7 contains our conclusions.

– 3 –
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CFT CFT ≃ CFT

CFT

≃ CFT ⊗ CFT

Figure 2. The equivalence between a defect in a CFT and a boundary condition in the folded

model.

2 Topological, factorising and conformal defects

To derive the properties of conformal defects, consider the complex plane with a defect line

placed on the real axis. The defect preserves the conformal symmetry of the bulk theory

if the field Txy = i
2π (T − T̄ ) is continuous across the real axis.

This condition is unchanged if we now consider the defect on a cylinder obtained by

identifying z with z + 2π. One can map this cylinder to the whole plane by z 7→ exp(iz)

and the real line gets mapped to the unit circle. In this formulation, a defect on the unit

circle defines an operator D on the space of states H in radial quantisation. Translating

the condition to this situation, a defect is conformal if the operator D commutes with the

difference of the holomorphic and anti-holomorphic copy of the Virasoro modes,

[Lm − L̄−m,D] = 0 for all m ∈ Z . (2.1)

General conformal defects of a given conformal field theory are difficult to describe

because according to (2.1) they only preserve the diagonal Virasoro algebra Ldm = Lm−L̄−m
(with central charge cd = c+ c̄) of the full holomorphic and anti-holomorphic symmetry.

A very useful way to think of this condition is in terms of boundary conditions on

the folded model. If one considers a CFT on the complex plane and folds the worldsheet

over along the imaginary axis, the resulting model consists of the tensor product CFT ⊗
CFT on the half plane with a boundary condition inserted along the imaginary axis as

shown in figure 2, where CFT is the original CFT with holomorphic and anti-holomorphic

dependences swapped. If the original model had a conformal defect along this line, (2.1)

implies that it is a conformally invariant boundary condition in the folded model. Note

that this includes the possibility that there is no defect (or the identity defect) so that

there is a distinguished conformal boundary condition corresponding to the absence of any

defect. This correspondence between defects in a CFT and boundary conditions on the

folded model CFT ⊗ CFT will often be used in what follows.

As said already, even if one starts from a rational model, the representation theoretic

methods used to construct the bulk theory cannot be applied to get a handle on a general

conformal defect. There are, however, two distinguished subsets of conformal defects which

are much easier to study than the general case and which we consider now.

2.1 Topological defects and defect fields

Topological defects are a particular class of conformal defects which preserve a larger

symmetry than the diagonal Virasoro symmetry and are amenable to classification on

account of this. The larger symmetry in question is, in fact, the full bulk symmetry, that

– 4 –
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is, the conformal defect obeys the stronger condition

[Lm,D] = 0 = [L̄m,D] for all m ∈ Z , (2.2)

which clearly implies (2.1). Such defects are called topological because they are tensionless

and can be deformed on the surface without affecting the value of correlators. Topolog-

ical defects were first studied in [25] (and the name ‘topological’ was introduced in [5]).

Condition (2.2) is equivalent to demanding that T and T̄ are separately continuous across

the defect line. As a consequence, the space of defect fields forms a representation of the

holomorphic and anti-holomorphic copy of the Virasoro algebra, just as the space of bulk

fields. In particular, a defect field φ has a left and right conformal weight (hl, hr).

The classification of topological defects can be carried out for rational conformal field

theories and general modular invariants if one requires the defects to preserve the holomor-

phic and anti-holomorphic copy of the chiral algebra [18, 25]. Here we consider only the

diagonal unitary Virasoro minimal models, for which the exposition simplifies.

Let thus M(p, p+1) be the Virasoro minimal model of central charge c = 1−6/(p2 +p)

and with diagonal modular invariant partition function. The irreducible representations

Ri of the Virasoro algebra Vir occurring in these models are labelled by the set of Kac

labels i ∈ Ip,

Ip =
{

(r, s)
∣

∣1 ≤ r ≤ p−1, 1 ≤ s ≤ p
}

/ ∼ where (r, s) ∼ (p−r, p+1−s) . (2.3)

The space of states propagating on a cylinder, or equivalently the space of bulk fields,

decomposes into representations of Vir⊕Vir as

H =
⊕

i∈Ip

Ri ⊗ R̄i . (2.4)

Both the elementary conformal boundary conditions [8] and the elementary topological

defects [25] in M(p, p+1) are labelled by the set Ip. Let ||a〉〉 be the boundary state

corresponding to removing the open unit disc from the complex plane and labelling the

resulting boundary by a ∈ Ip. Denote by Dk : H → H the operator describing a topological

defect with label k ∈ Ip placed on the unit circle in the complex plane. Explicitly, these

two quantities are given by

||a〉〉 =
∑

i∈Ip

Sai√
S0i
|i〉〉 and Dk =

∑

i∈Ip

Ski
S0i

idRi⊗R̄i , (2.5)

where 0 is the identity or vacuum representation (1, 1), |i〉〉 is the Ishibashi state in the

(algebraic completion of) Ri ⊗ R̄i and Sij is the modular S-matrix for M(p, p+1),

S(r,s) (x,y) =
√

8/(p2+p) · (−1)1+sx+ry · sin π(p+1)rx

p
· sin πpsy

p+1
. (2.6)

An important property of a defect is its entropy g defined in the same way as the boundary

entropy and identical in value to the boundary entropy of the corresponding boundary
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condition in the folded model [1]. From (2.5) we read off the g-value of a boundary condition

and a topological defect as

g( ||a〉〉) =
Sa0√
S00

and g(Dk) =
Sk0
S00

. (2.7)

We recall that topological defects can be deformed freely on the surface as long as

they do not cross field insertions, boundaries, or defect lines. The fusion of two topological

defects corresponds to the composition of the defect operators, and the fusion of a defect

with a boundary condition is given by the action of the defect operator on the boundary

state. One easily checks that for i, j, k, a ∈ Ip,

D(1,1) = idH , DkDl =
∑

m∈Ip

N m
kl Dm , Dk ||a〉〉 =

∑

b∈Ip

N b
ka ||b〉〉 , (2.8)

where N k
ij are the fusion rule coefficients. By evaluating the corresponding partition func-

tions, or by using the methods of [17], one finds that the space of defect fields living on a

defect labelled by k ∈ Ip is given by

HDk =
⊕

i,j∈Ip

(

Ri ⊗ R̄j
)⊕

P

x∈Ip
N x
ij N

x
kk . (2.9)

We will also need the space of states propagating on a strip with boundary condition (1, 1)

on one side and a ∈ Ip on the other side, and with a defect labelled k ∈ Ip running parallel

to the boundaries inside the strip. In the same way as (2.9) one finds this is

H(1,1),a
k =

⊕

i∈Ip

R
⊕N i

ak

i . (2.10)

2.2 Factorising defects

By a factorising defect we mean a conformal defect represented by an operator F that

satisfies the stronger conditions

(Lm − L̄−m)F = 0 = F (Lm − L̄−m) for all m ∈ Z , (2.11)

which then imply (2.1). Such a defect is totally reflecting and is simply a sum of products

of conformal boundary states

F =
∑

a,b∈Ip

nab ||a〉〉 〈〈b || (2.12)

for some non-negative integers nab. In the folded model this corresponds to separate bound-

ary conditions on the two sheets, as in figure 3. The g-value of the factorising defect (2.12) is

g(F ) =
∑

a,b∈Ip

nab
Sa0Sb0
S00

. (2.13)

– 6 –
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CFT a b CFT ≃ CFT

CFT

a

b̄

Figure 3. The equivalence between a factorising defect in a CFT and separate boundary conditions

in the folded model.

2.3 Conformal defects

Returning to general conformal defects, we give the form of the partition function on a

cylinder and define a useful pairing on such defects.

Let d and d′ label two conformal defects and consider a torus of width R and height

L with two vertical defect lines at distance ηR, 0 < η < 1, from each other. Denote by Dd

and Dd′ the defect operators of the defects d and d′. Define the partition function

Zd,d′(q; η) = trH

(

q̃ η(L0+L̄0−c/12) (Dd)
† q̃(1−η)(L0+L̄0−c/12)Dd′

)

(2.14)

where q = e−2πL/R and q̃ = e−2πR/L. The adjoint (Dd)
† describes the defect operator

for the defect d inserted with reversed orientation (see [25] and [19, sect. 6.1]). Using

the explicit expressions (2.5) one checks that for the factorising and topological defects in

M(p, p+1) one has

(||a〉〉〈〈b ||)† = ||b〉〉〈〈a || and (Dk)
† = Dk . (2.15)

In the special case that η = 1
2 , we can identify the original CFT on a torus with

two defects with the folded model on a cylinder of circumference L and width R/2 with

conformal boundary conditions corresponding to the defects d and d′ at the ends of the

cylinder. The partition function of the folded model on a cylinder of circumference L and

width R/2 is a sum of Virasoro characters χh,2c(q) at twice the central charge of M(p, p+1),

so that the partition function can be written as

Zd,d′

(

q;
1

2

)

=
∑

h

mh χh,2c(q) (2.16)

where q = e−2πL/R, mh is the multiplicity of the representation with highest weight h

and the sum can be over a finite or infinite set of weights h. We have assumed that the

spectrum of the folded model on the strip is discrete, i.e. that Zd,d′(q;
1
2 ) is a sum of powers

of q, rather than an integral. This may not be the case for a general conformal defect,

but it is true for the topological defects Dk and for the totally factorising defects ||a〉〉〈〈b ||
as can be checked with the explicit expression in (2.5). We investigate defects which can

be reached by renormalisation group flows starting at these defects, and so we expect the

spectrum at the IR fixed point to be discrete as well.

We define the pairing (d, d′) by

(d, d′) = m0 ∈ Z≥0 , (2.17)

i.e. the multiplicity of the vacuum character in Zd,d′(q;
1
2 ). For unitary models conformal

weights have to be non-negative so that we can write (d, d′) as the limit

(d, d′) = lim
q→0

qc/12 Zd,d′

(

q;
1

2

)

. (2.18)

– 7 –
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Since tr(X) = (tr(X†))∗ for any operator X, and (d, d′) is real, it follows from (2.18) that

(d, d′) = (d′, d).

By passing to the folded model one checks that (d, d) ≥ 1, that (d, d) = 1 if and only

if the conformal defect d is elementary, and that (d, d′) = 0 if d and d′ are elementary and

distinct. The latter statement follows in the folded model since one cannot have a boundary

changing field of weight zero between two distinct elementary boundary conditions a and b

(such a field could be pushed along the a boundary changing it into a b boundary without

affecting correlators, showing that a and b have equal boundary states1).

In particular, if d is a superposition and d′ is elementary, then (d, d′) gives the multi-

plicity of d′ in the decomposition of d into elementary defects.

Another useful property of the pairing is that if k ∈ Ip is a topological defect, and

k ⋆d denotes the fused defect (which is again conformal and has the defect operator DkDd)

we have

(k ⋆ d, d′) = (d, k ⋆ d′) and (d ⋆ k, d′) = (d, d′ ⋆ k) . (2.19)

The first equality follows from

trH

(

q̃
1
2
(L0+L̄0−c/12) (DkDd)

† q̃
1
2
(L0+L̄0−c/12)Dd′

)

(2.20)

= trH

(

q̃
1
2
(L0+L̄0−c/12) (Dd)

† q̃
1
2
(L0+L̄0−c/12)DkDd′

)

as Dk is self-adjoint and commutes with L0+L̄0. The second equality can be seen similarly.

2.4 Defect perturbations

Finally we consider perturbations of topological defects. A perturbation of a topological

defect by a defect field φhl,hr is relevant if hl + hr < 1. This is in contrast to bulk

perturbations, which are integrated over the whole surface, not just over the defect line,

and are relevant if hl + hr < 2.

The first thing to note is that all topological defects in unitary minimal models have

relevant perturbations, even the identity defect (that is, no defect), which is quite different

from the boundary situation where there are (p−1) stable boundary conditions for M(p, p+

1). The fields on the identity defect are all scalars and are exactly the bulk fields φh,h.

There are ⌊
√

2p2 + 2p + 1⌋ − 2 of these with scale dimension less than or equal to 1, as

opposed to 2p− 3 which have scale dimension ≤ 2. In any case, even the identity defect is

unstable to defect perturbations by these bulk fields (considered as fields on the defect).

As another example, on the (1, 2) defect there are both scalar primary fields φh,h and

non-scalar primary fields φh,h′ with h 6= h′. There are (p − 1)2 scalar primary fields of

which 2⌊
√

2p2 + 2p+ 1⌋ − 6 have dimension ≤ 1 and (p − 1)(p − 2) non-scalar primary

fields of which 2(p − 2) have dimension ≤ 1. The relevant non-scalar fields are

{φ(r,r),(r,r+2) and φ(r,r+2),(r,r) | 1 ≤ r ≤ p− 2} . (2.21)

1Some care has to be taken since in general the boundary state does not characterise the boundary

condition uniquely. Similarly, the defect operator does in general not determine the defect uniquely. An

example of this is discussed in [19]. For unitary models this ambiguity is not expected to occur, i.e. there

is a one-to-one correspondence between boundary conditions and boundary states, and similar for defects.

– 8 –
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We note here that the interpretation of a defect as a boundary condition in a folded

model means that the boundary g-theorem [1, 15] applies to perturbed defects as well: g

is decreasing along RG flows and so restricts the possible IR fixed points accessible from

any given UV fixed point.

The simplest class of relevant perturbations are those by chiral defect fields φh,0 or

φ0,h with h < 1. Such perturbations were investigated in [29]. These perturbed defects are

believed to have particularly nice properties, for example to commute with L0 + L̄0, see

section 2.4.1 below.

On the other hand, since a topological defect perturbed by λl · φh,0, say, will commute

with all L̄m for arbitrary values of the coupling λl, the conformal defect obtained as the IR

fixed point for large λl will necessarily be topological [5]. To obtain an IR fixed point which

is conformal but not topological, the next simplest perturbation to try is the defect field

λl · φh,0 + λr · φ0,h . (2.22)

A topological defect perturbed by this field will no longer commute with either the Lm’s

or the L̄m’s and in general it will also not commute with L0 + L̄0 (there are exceptions, for

example the fusion of a defect perturbed by φh,0 with a defect perturbed by φ0,h).

For the conformal weight h in (2.22) we choose h(1,3) = (p − 1)/(p + 1). This field

is of interest for several related reasons: in many circumstances it leads to integrable

perturbations which can be solved exactly and we expect the purely chiral perturbations to

be integrable and exactly solvable; this perturbation is also related to one of the integrable

lattice description of minimal models; finally, it is particularly suitable for a renormalisation

group analysis, as it does not generate further relevant fields under fusion (note that φh,h
already has weight greater than or equal to 1), and it becomes marginal in the limit p→∞.

The simplest topological defect which allows for a perturbation by (2.22) is the (1, 2)-

defect, and so this is finally the situation which we will study:

D12(λlφ+ λrφ̄) (2.23)

The (1,2)-defect perturbed by λlφ+ λrφ̄ with φ = φh(1,3),0 and φ̄ = φ0,h(1,3)
.

There are two useful results which we can derive for this perturbed defect which we

give now.

2.4.1 Translation invariance

As mentioned above, it is believed that a topological defect perturbed by a chiral field still

commutes with L0 + L̄0. This is shown in [29] for chiral fields with h < 1/2 where there

are no UV divergences in the expansion of the perturbed defect; for fields with h ≥ 1/2

this property depends on the existence of a suitable regulator which preserves the commu-

tators. Assuming for the moment that such a regulator can be found, in the present case

this would imply

[L0 + L̄0,D(1,2)(λφ)] = 0 and [L0 + L̄0,D(1,2)(λφ̄)] = 0 . (2.24)

This guarantees that the action of D(1,2)(λφ) and D(1,2)(λφ̄) on a boundary state is non-

singular.

– 9 –
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One particular consequence of the property (2.24) is that the spectrum of states of the

model on a strip containing a defect parallel to the edges of the strip is independent of the

position of the defect. This is easy to see in the case of the TCSA regulator, as we prove

in appendix D, so that it is very reasonable to apply this assumption to our TCSA results

and we will use this in section 3.1 to deduce the end-points of the chiral perturbations.

2.4.2 Commutation with a subset of topological defects

Let D(
∑

α λαφα) be a topological defect perturbed by defect fields φα where φα is a field

(not necessarily primary) in the sector Rkα ⊗ R̄lα . Suppose that either all of the kα are of

the form (1, sα) with sα odd, or all of the lα are of the form (1, sα) with sα odd. Then

[

D(r,1) , D(
∑

α λαφα)
]

= 0 for 1 ≤ r ≤ p−1 . (2.25)

We will demonstrate this in the case that the kα are of the form (1, sα) with sα odd. The

second case can be seen analogously.

Let x ∈ Ri⊗ R̄i and y ∈ Rj ⊗ R̄j for i = (a, b) and j = (c, d) elements of Ip. From the

explicit form of D(r,1) in (2.5) and abbreviating D ≡ D(
∑

α λαφα) we find

〈x|D(r,1)D|y〉 =
S(r,1)(a,b)

S(1,1)(a,b)
〈x|D|y〉 , 〈x|DD(r,1)|y〉 =

S(r,1)(c,d)

S(1,1)(c,d)
〈x|D|y〉 . (2.26)

Now expand out the exponential in 〈x|D|y〉. Since each term in the integrand is in the

sector R(1,sα) ⊗ R̄lα , the expression 〈x|D|y〉 can be non-zero only if i and j are such that

a=c and b−d is even. Substituting the expression (2.6) for Sij gives

S(r,1)(a,b)

S(1,1)(a,b)
= (−1)(r+1)b sin(π(p+1)ra/p)

sin(π(p+1)a/p))
. (2.27)

Since a=c and b−d is even, the two expressions in (2.26) are therefore equal for all states

x, y, proving (2.25).

For us the commutator (2.25) is interesting because it implies [D(r,1),D(1,2)(λlφ +

λrφ̄)] = 0 with φ and φ̄ as in (2.23). However, let us note in passing that (2.25) can also

be applied to bulk perturbations. In particular, we can set D = exp(−ℓH) with H the

Hamiltonian of the minimal model perturbed by the bulk field φ(1,3),(1,3) since

H =

∫
(

1

2π
(T+T̄ ) + µφ(1,3),(1,3)

)

dx (2.28)

and T and T̄ are descendent fields in the (1, 1) representation. The topological defectsD(r,1)

continue to commute with D for all values of the coupling µ, and thus they are conserved

charges also off criticality. This provides an independent argument for the observation

made in [13] that under the bulk flow between two minimal models generated by φ(1,3),(1,3),

the topological defect D(r,1) should again flow to a topological defect.
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3 Exact results

The properties (2.24) and (2.25) of D(1,2)(λlφ + λrφ̄) enable us to find two exact results

for the perturbed defect, which we describe in sections 3.1 and 3.2. We also summarise in

section 3.3 the known results for the Ising model (the case p = 3) which is distinct from

the other models.

3.1 The chiral perturbations

The translation invariance of the purely chiral and purely anti-chiral perturbations in (2.24)

allows us to determine the nature of these flows exactly.

Consider the situation described in (2.23), i.e. D(1,2)(λlφ+λrφ̄) is the operator obtained

by placing the (1, 2)-defect on the unit circle and perturbing by λlφ + λrφ̄ with λl and

λr ∈ R. Let ψ be the primary boundary field on the (1, 2)-boundary condition in the R(1,3)

representation and denote by ||(1, 2) + λψ 〉〉 the boundary state obtained by perturbing the

(1, 2)-boundary by λψ. One can normalise the fields φ, φ̄ and ψ such that the identity2

D(1,2)(λφ)||1, 1〉〉 = ||(1, 2) + λψ 〉〉 = D(1,2)(λφ̄)||1, 1〉〉 (3.1)

holds. The boundary flows in the middle of this series of equalities are already known [21,

23, 28],

||1, 1〉〉 −∞←λ←−−−−−−− ||(1, 2) + λψ 〉〉 λ→+∞−−−−−−−→ ||2, 1〉〉 . (3.2)

As mentioned in section 2.4, a chirally perturbed topological defect necessarily has again

a topological defect as an IR fixed point. Acting with the IR topological defect on ||1, 1〉〉
gives a conformal boundary state that has to agree with (3.2). The explicit expressions

in (2.5) show that a topological defect is uniquely determined by its action on ||1, 1〉〉, so

that the above reasoning fixes the horizontal and vertical flows in figure 1 to be

I ≡ D(1,1)
−∞←λl←−−−−−−− D(1,2)(λlφ)

λl→+∞−−−−−−−→ D′ ≡ D(2,1) ,

I ≡ D(1,1)
−∞←λr←−−−−−−−− D(1,2)(λrφ̄)

λr→+∞−−−−−−−−→ D′ ≡ D(2,1) .
(3.3)

3.2 The factorising component of any IR fixed point

The fact that our perturbed defects commute with the set of topological defects {D(t,1)}
shown in (2.25) allows us to determine the building blocks of any factorising component of

any IR fixed point.

Consider the superposition of elementary factorising defects given by

F s|s
′

=

p−1
∑

t=1

D(t,1)||1, s〉〉〈〈1, s′ ||D(t,1) ·
{

1
2 : p odd and s = s′ = p+1

2

1 : otherwise
. (3.4)

2This identity is evident in the case λ = 0. Since the space of (1, 3)-primary fields on the (1, 2)-boundary

is one-dimensional and spanned by ψ, the perturbing fields φ and φ̄ have to be proportional to ψ once the

(1, 2)-defect is pushed on top of the (1, 1)-boundary. Alternatively, the identity can be proved with the

methods in [17].
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The factor of 1
2 has to be included because for s = s′ = p+1

2 we have ||t, p+1
2 〉〉〈〈t,

p+1
2 || =

||p − t, p+1
2 〉〉〈〈p− t,

p+1
2 ||, so that in this case each factorising defect appears twice in the

sum. For example, in the Ising model (p = 3) we have F 2|2 = ||1, 2〉〉〈〈1, 2||.
It is shown in appendix A that [D(r,1), F

s|s′ ] = 0 for r = 1, . . . , p−1, and that the

following statement is true: If a conformal defect C obeys [D(2,1), C] = 0 (which implies

that [D(r,1), C] = 0 for all r) then we can write

C = R+ F (3.5)

where R is a conformal defect that does not contain factorising defects as summands, i.e.

(R, ||a〉〉〈〈b ||) = 0 for all a, b ∈ Ip, and where F is a combination of factorising defects

taking the form

F =

p
∑

s,s′=1

p−1
∑

a=1

ms|s′

a D(a,1)F
s|s′ (3.6)

for suitable constants m
s|s′
a ∈ Z≥0. If C is an IR fixed point of D(1,2)(λlφ + λrφ̄) in a

particular direction in the (λl, λr)-plane, it will commute with the D(r,1) and hence can be

written in the form (3.5). This will be exploited in the g-function analysis in section 4 and

in identifying the spectrum on a strip with a perturbed defect via TCSA in section 6.

3.3 The Ising case

The Ising model is unique amongst unitary minimal models in that its conformal defects

can be completely classified. The reason is that its square Ising⊗Ising is a c = 1 CFT

which can be described in terms of an orbifolded free boson. Using this relation, Oshikawa

and Affleck give a complete classification in [24] of the conformal defects of the Ising model

in terms of the conformal boundary conditions of the orbifolded boson as follows.

There is a continuous family of Dirichlet boundary conditionsD(ϕ0) subject toD(ϕ0)=

D(−ϕ0) = D(ϕ0 + 2π) for which a fundamental domain is ϕ0 ∈ [0, π]; and a continuous

family of Neumann boundary conditions N(ϕ̃0) with N(ϕ̃0) = N(−ϕ̃0) = N(ϕ̃0 + π) for

which a fundamental domain is ϕ̃ ∈ [0, π2 ]. The boundary conditions in the two continuous

families are all elementary, except for the boundary conditions at the endpoints of the

fundamental domains, which each split into two elementary boundary conditions so giving

a discrete set of eight boundary conditions. Altogether we have

|D(ϕ0)〉 with ϕ0 ∈ (0, π) and |D(0)〉± , |D(π)〉± ,
|N(ϕ̃0)〉 with ϕ̃0 ∈ (0, π/2) and |N(0)〉± , |N(π/2)〉± .

These have g values
√

2 for the continuous Neumann series, 1 for the continuous Dirichlet

series, 1/
√

2 for the discrete Neumann defects and 1/2 for the discrete Dirichlet defects.

There are three topological defects in the Ising model given by Kac labels (1, 1) = id,

(1, 2) = σ and (2, 1) = ε and three Cardy boundary conditions “+”= (1, 1), “f”= (1, 2)

and “−”= (2, 1). The topological and factorising defects are identified with the orbifolded

boson boundary conditions [24, 26] as shown in figure 4.
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t(f−) = N(0)−

t(f+) = N(0)+ t

t

(+f) = N(π2 )+

(−f) = N(π2 )−

σ = N(π4 )

t(−−) = D(0)−

t(++) = D(0)+ t

t

(−+) = D(π)+

(+−) = D(π)−(ff) = D(π2 )

1 = D(π4 ) ǫ = D(3π
4 )

Figure 4. The Dirichlet (top) and Neumann (bottom) boundary conditions on the orbifolded free

boson and the corresponding topological and factorising defects in the folded Ising model.

To identify the fixed points of the numerical RG flows in section 6.1 we need the

partition function encoding the spectrum of states on a strip with the (1, 1) =“+” boundary

condition on the two edges and a defect in the middle. When this strip is folded, this is equal

to the partition function in the orbifolded boson model with the (++) = D(0)+ boundary

condition at one side of the folded strip and some boundary condition corresponding to the

Ising defect at the other boundary. In the UV this is the (1, 2) = σ = N(π/4) boundary

condition, but by the g-theorem, the IR point fixed point can be any Dirichlet boundary

condition (together with any of the four discrete Neumann conditions, but these do not

arise in the flows we consider); the partition function of such a system is given in [24]

ZD(0)+,D(ϕ0)

(

q;
1

2

)

=
q

1
2
(
ϕ0
π

)2

η(q)

∞
∑

n=−∞

q2n
2+2n

ϕ0
π , (3.7)

where q = e−2πL/R. This expression is also valid at the endpoints ϕ0 = 0, π if one takes

D(0) = D(0)+ +D(0)− and D(π) = D(π)+ +D(π)−.

As has been discussed in section 3.1, the IR fixed points of the purely chiral flows can

be easily found: they are the (2, 1) = ε and (1, 1) = id topological defects in the positive

and negative directions, respectively. The remaining fixed points have been recently found

(amongst other results) in [11] and the space of flows is shown in figure 13(a). In that

paper, the perturbed defects are parametrised by an angle θ with the general result

N(ϕ̃0) −→ D(ϕ̃0 + θ) . (3.8)

We define the angle α by tan(α) = λr/λl, with α ∈ (−π
2 ,

π
2 ) for λl > 0 and α ∈ (π2 ,

3π
2 ) for

λl < 0. One can check that α is related to θ by α = π− θ so that the prediction of [11] for

the RG flows of the defects (2.23) is

Dσ = N(π/4) −→ D(5π/4− α) , (3.9)

which is exactly what we shall find in section 6.1.
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4 Perturbative analysis

The renormalisation group equations for perturbations of conformal boundary conditions

(and hence also of defects) have been known for a long time, studied first in [1] and used

in [20, 28] to study the flows in unitary minimal models.

The necessary ingredients are a conformal boundary condition, a set of relevant bound-

ary fields S = {φi} which is closed in the sense that all the relevant fields occurring in the

fusion of any two fields in S is also in S, the conformal dimensions hi of these fields, and the

structure constants cijk between these relevant fields. Furthermore, since the perturbative

integrals are divergent for hi ≥ 1/2, it is necessary to regularise them to which end we intro-

duce a UV cut-off a as in [1] and define dimensionless couplings µi = λia
yi where yi = 1−hi.

Using the regularisation in [1], the RG equations for the couplings µi are

µ̇i = yiµi −
∑

j,k

cijkµjµk +O(µ3) . (4.1)

The change in the g-value of the boundary condition/defect is also known in perturbation

theory [1, 28] and is (to third order)

log(g(µi))− log(g0) = −π2yiµ
2
i +

2π2

3

∑

j,k

cijkµiµjµk . (4.2)

The scale dimensions of the perturbing fields at a fixed point can be read off by linearising

the RG equations about the new fixed point, the eigenvalues being 1−h′ where h′ is the

scale dimension of the field [20].

We now restrict attention to the perturbed defects (2.23). In this case the space of

relevant defect fields generated by φ and φ̄ closes on those fields alone, that is they generate

no new relevant defect fields, so we do not need to introduce couplings to any other fields

into the RG equations.

Secondly, since φ and φ̄ are chiral and anti-chiral respectively, the only structure con-

stants appearing in the RG equations which can be non-zero3 are cφφφ and cφ̄φ̄φ̄, and

these are in fact equal and the same as the boundary structure constant cψψψ for the field

ψ ≡ ψ(1,3) on the (1, 2) conformal boundary condition (see footnote 2 and [29, sect. 2]).

This means that the defect RG equations are two decoupled copies of the boundary RG

equations of [28], that is

µ̇l = yµl − cψψψµ2
l , (4.3)

µ̇r = yµr − cψψψµ2
r ,

where y = 1 − h1,3 = 2
p+1 and cψψψ =

√

8/3 + O(y). The g value of the perturbed defect

is given to third order by

log(g(µl, µr))− log(g(0, 0)) = −π2y(µ2
l + µ2

r) +
2π2

3
cψψψ(µ3

l + µ3
r) . (4.4)

Each RG equation has two fixed points, µ = 0 and µ = µ∗ (where µ∗ = y/cψψψ) so that

the combined RG equations have four fixed points.

3It is important to note that cψψψ 6= 0 for p > 3 but when p = 3 the constant cψψψ vanishes, so that

this case is not directly amenable to the analysis here.
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µl

µr

D′

D D′

Figure 5. The perturbative flows for the system (4.3). The perturbative fixed points are as in

figure 1, the black diamond being the conformal defect C.

It is important to note that the perturbation expansion is for small y, that is for large

p where the central charge is close to 1. While the perturbative results for boundary flows

in [28] still hold true all the way down to p = 3, this will not be the case here, as the

spectrum of the IR fixed points is quite different at p = 3.

The perturbative RG flows are shown in figure 5.

The values of the couplings at the fixed points, the corresponding value of g and

the scale dimensions of the perturbing fields at the fixed point (to first order in y) are

given below

(µl, µr) log(g/g0) hφ hφ̄
(0, 0) 0 1− y 1− y
(µ∗, 0) −π2y3

8 1 + y 1− y
(0, µ∗) −π2y3

8 1− y 1 + y

(µ∗, µ∗) −π2y3

4 1 + y 1 + y

(4.5)

The topological defects of lowest g value and their expansions in y to third order are

Defect g log(g)

D(1,1),D(p−1,1) 1 0

D(2,1),D(p−2,1) 2 cos
(

π
p

)

log(2)− π2y2

8 − π2y3

8

D(1,2),D(1,p−1) 2 cos
(

π
p+1

)

log(2)− π2y2

8

D(3,1),D(p−3,1) 1 + 2 cos
(

2π
p

)

log(3)− π2y2

3 − π2y3

3

D(1,3),D(1,p−2) 1 + 2 cos
(

2π
p+1

)

log(3)− π2y2

3

(4.6)

Comparing g-values and noting that the end point of an RG flow generated by a chiral

field must be topological, we see that the chiral and anti-chiral perturbations of D(1,2) can

a priori have either the D(2,1) or D(p−2,1) defect as their perturbative fixed point. This can
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be decided by considering two point functions of bulk fields in the presence of the defect,

which can be calculated using (2.5):

D(1,2) D(2,1) D(p−2,1)

〈ϕ(12,12)|D|ϕ(12,12)〉 −2 cos 2π
p+1 −2 cos πp −2(−1)p cos πp

〈ϕ(21,21)|D|ϕ(21,21)〉 −2 cos π
p+1 −2 cos 2π

p −2(−1)p+1 cos 2π
p

(4.7)

We see that the two-point functions in the presence of D(2,1) are perturbatively close to

those in the presence of D(1,2), whereas in the presence of D(p−2,1) the two point functions

of ϕ(12,12) and ϕ(21,21) are not perturbatively close for p odd and p even respectively. Thus

we deduce that the perturbative fixed point for the chiral perturbations of D(1,2) are D(2,1)

and not D(p−2,1).

Equally, we see that the C defect which is the fourth fixed point in the ‘++’ direction is

not a topological defect. The question remains whether C can be found as a superposition

of factorising defects or the Identity defect superposed with a set of factorising defects.

This is easy to address given the general form of a fixed point in (3.5). We first compute

the g-value of each summand in (3.6)

g(D(a,1)F
s|s′) =

(

sin(aπp )

sin(πp )

)(

sin( sπ
p+1)

sin( π
p+1)

)(

sin( s
′π

p+1)

sin( π
p+1)

)

·
(

√

2p

p+ 1

sin( π
p+1)

sin(πp )

)

· δ

= ass′
(√

2− 3

2
√

2
y

)

+O(y2) . (4.8)

Here δ is either 1
2 or 1 as in (3.4); it does not appear in the second line as this is evaluated

for fixed s, s′ and large p.

Since each of the combinations D(a,1)F
s|s′ has a g-value greater than or equal to one as

does each of the topological defects, and since the g-value ofD(1,2) is less than two, it is clear

that any IR fixed point of a flow starting from D(1,2) can include at most one topological

defect or one factorising combination but not both. Furthermore, for large p, the only

possible factorising combinations with small enough g value are F 1|1 and D(p−1,1)F
1|1 but

these do not agree with the perturbative calculation of the g-value of C.

(We note here that there is an additional candidate in the case p = 4: the factorising

defect D(2,1)F
1|1 also has a g-value lower than that of D(1,2)).

Summarising, from an analysis of g-values, C is not a linear superposition of topological

defects and factorising defects and so contains a new conformal defect; the most likely result

is that C is a new elementary conformal defect, but that cannot be determined from the

calculations of the g value alone.

There remains the question of identifying the nature of the fields φ and φ̄ at the fixed

points. We can do this by checking which fields on D(2,1) have weights as given in (4.5).
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This is straightforward and the only candidates are as given below

(µl, µr) D φ φ̄

(0, 0) D(1,2) φ(13)(11) φ(11)(13)

(µ∗, 0) D(2,1) φ(31)(11) φ(33)(13)

(0, µ∗) D(2,1) φ(13)(33) φ(11)(31)

(µ∗, µ∗) C ? ?

(4.9)

This means that we should be able to obtain the ‘C’ defect by TCSA calculations starting

both from D(1,2) and perturbing by φ+ φ̄ and also starting from D(2,1) and perturbing by

φ(13,33) (or equivalently by φ(33,13)). This is one of the subjects of section 6.

5 Truncated conformal space approach for defects

5.1 The TCSA Hamiltonian for defects

The so-called truncated conformal space approach or TCSA is a numerical method for cal-

culating the spectrum of a perturbed conformal field theory. One chooses a system which

admits a Hamiltonian description and then the Hamiltonian is restricted to a finite dimen-

sional subspace of the infinite dimensional Hilbert space spanned by energy eigenstates

whose energy eigenvalues (or conformal weights) are not greater than a threshold value.

The original idea was proposed in [31] and it was applied for the first time for boundary

problems in [9].

One can envisage several possible systems involving defects which allow such a Hamil-

tonian description. We choose to apply a generalisation of the boundary TCSA of [9],

because the space of states is much smaller than in the other possibilities (they form irre-

ducible representations of a single copy of the Virasoro algebra — see (2.10)). This makes

the numerical calculations easier and we can also make use of the known properties of the

interactions between defects and boundaries. The simplest situation is given by a strip of

width R with conformal boundary condition (1, 1) on both sides and a defect labelled by

k ∈ Ip running parallel to the boundaries at a distance a from one boundary. According

to (2.10) the Hilbert space consists of a sole representation (independently of a),

H(1,1),(1,1)
k = Rk . (5.1)

By the exponential map the strip unfolds onto the upper half plane with the boundaries

lying along the negative and the positive real axis and the defect line running from the

origin to infinity at an angle θ = aπ/R, as shown in figure 6.

The Hamiltonian of this conformal field theory perturbed by N defect fields is

H =
π

R

[

L0 −
c

24
+

N
∑

i=1

λi

(

R

π

)1−(hil+h
i
r)

ei(h
i
l−h

i
r)θφhi

l
,hir

(eiθ, e−iθ)

]

. (5.2)

We use a non-orthonormal basis consisting of vectors of the form

L−n1 . . . L−nm|hk〉 , n1 ≥ · · · ≥ nm > 0 . (5.3)
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a

R

x = 0

defect

z w = exp(zπ/R)

θ

|w| = 1

Figure 6. The strip is mapped to the upper half-plane and a defect running parallel to the edges

of the strip is mapped into a defect running in a radial straight line. The dotted line shows an equal

time slice for the Hamiltonian description.

We label these basis vectors |vi〉, their L0 eigenvalues by ∆i and their inner product matrix

Gij = 〈vi|vj〉. The inner product matrix appears explicitly in the matrix to be diagonalised:

hjk =
π

r

[

(

∆j −
c

24

)

δjk +

N
∑

i=1

κi e
i(hil−h

i
r)θ (G−1B(θ)i)jk

]

, (5.4)

where we have introduced an energy scale Λ so that the operator h = H/Λ is dimensionless

and its matrix elements are hij where h|vj〉 = hij |vi〉; furthermore, B(θ)ijk are the matrix

elements 〈vj |φhil ,hir(e
iθ, e−iθ)|vk〉 in the basis (5.3), r = ΛR is a dimensionless parameter

and κi = λi(R/π)1−h
i
l−h

i
r are dimensionless coupling constants.

In the general case it is necessary to determine the structure constants to normalise

the matrix elements B(θ)i correctly, but in the cases we consider the Hilbert space consists

of a single representation so that there is a single highest weight |hk〉 and so we normalise

the fields so that 〈hk|φhi,h̄j(1)|hk〉 = 1.

The two special cases we will consider are the case N = 1 of a single non-chiral

perturbation and the case N = 2 where the perturbing fields are two chiral perturbations

(2.22) with (h1
l , h

1
r) = (h, 0) and (h2

l , h
2
r) = (0, h). In the first case, there is a single

dimensionless coupling constant κ and the Hamiltonian becomes

r

π
hjk =

(

∆j −
c

24

)

δjk + κ ei(hl−hr)θ (G−1B(θ))jk . (5.5)

In the second case, the two coupling constants are κl = κ1 = κ cos(α) and κr = κ2 =

κ sin(α) so that

r

π
hjk =

(

∆j −
c

24

)

δjk + κ
(

cos(α) eihθ(G−1B(θ))jk + sin(α) e−ihθ(G−1B(θ)∗)jk

)

, (5.6)

where B(θ)∗ is the complex conjugate of the matrix B(θ).

From the equality

(∆i −∆j)〈vi|φh(z)|vj〉 = 〈vi|[L0, φh(z)]|vj〉 =

(

h+ z
∂

∂z

)

〈vi|φ(z)|vj〉 , (5.7)

it follows that the matrix elements of a chiral field between L0 eigenstates have coordi-

nate dependence

〈vi|φh(z)|vj〉 = C · z∆i−h−∆j . (5.8)

– 18 –



J
H
E
P
1
1
(
2
0
0
9
)
0
5
7

This implies that

eihθB(θ)kl + e−ihθB(θ)∗kl ∝ ei(∆k−∆l)θ + ei(∆l−∆k)θ . (5.9)

When the defect is in the middle of the strip, θ = π/2, and the couplings to the left and

right fields are the same (cos(α) = sin(α)) then the (k, l) matrix element of the perturbing

Hamiltonian is proportional to i∆k−∆l + (−i)∆l−∆k . If ∆l −∆k is an odd integer, the two

terms cancel each other and the matrix element becomes exactly zero. In all our examples,

the Hilbert space consists of a single representation, so the weight differences are always

integers and they are odd if one of the vectors belongs to an even level while the other one

belongs to an odd level. This means that for θ = π/2 and κl = κr, the even and odd levels

of the representation constitute two disconnected sectors: the Hamiltonian has zero matrix

elements between vectors belonging to different sectors and thus it is block diagonal.

5.2 Finite-size scaling in TCSA

There are two RG-type flows at play in the TCSA system. The first is the physical flow

in which we are interested, that is the flow induced by scaling the size of the system. We

parametrise this flow by a parameter t. The second is that induced by changing the cutoff

N limiting the size of the space of states. We are interested in the case of two relevant

fields with a Hamiltonian (5.6) in which case there are three couplings to consider, r(N, t)

and κi(N, t).

Considering the case of infinite cut-off first, we expect that the TCSA system ap-

proaches the system with canonical scaling, so that at N =∞
{

ṙ = r

κ̇i = yκi
or

{

r = r0e
t

κi = κ0
i e

yt
(5.10)

For finite N , these are both altered. This has two effects: firstly, the eigenvalues of hjk
are related to those of the renormalised Hamiltonian up to an unknown factor, so that it

is only ratios of energy differences that can be calculated accurately; secondly, the TCSA

flow can approximate IR fixed points for finite values of the bare coupling constants or

equivalently a finite value of the bare volume [10], so that we can find one, or indeed more,

conformal field points for increasing values of κ.

We can find the change in the coupling constants as N changes, which from [10] is

according to an RG-type equation of the form

−N ∂κi
∂N

(N, t) = β̃i(κ(N, t);N) , (5.11)

where

β̃i(κ;N) = −cijkκjκkN−y + o(κ2, N−y, y) . (5.12)

We can use this equation to find the finite-size scaling flow at fixed cut-off under two

assumptions.
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The first assumption, already stated, is that in the N →∞ limit, the TCSA couplings

become the “linear beta function” couplings, a fact assumed in much of the literature, so

that the finite-size flow at N =∞ is

κi(∞, t) = eyt κ0
i . (5.13)

The second assumption is that the leading terms in the beta-functions take a simple scaling

form, that is

β̃i(κ;N) = Nyγi(κN
−y) + . . . . (5.14)

This is true for the quadratic terms and a reasonable assumption for the leading behaviour

of the higher order terms.

Given these two assumptions, we can then deduce the following three results (see

appendix B)

κi(Ne
t, t) = eyt fi(κ

0) (5.15)

κi(N, t) = eyt κi(Ne
−t, 0) (5.16)

∂

∂t
κi(N, t) = βi(κ(N, t);N) (5.17)

The first result states that we can follow a finite-size scaling flow by scaling the couplings

by the same factor but also increasing the cut-off. This is useful if we do not know the

beta-functions, as is the case here. The second result gives the scaling flow at fixed N in

terms of the couplings at smaller N , and the third result states that the finite-size flow at

a fixed cut-off is governed by a standard beta-function relation, where the functions are

simply related to those for the change in N :

βi(κ;N) = yκi + β̃i(κ;N) . (5.18)

Finally, a conformal defect corresponds to a zero of the beta-functions βi(κ;N). From the

leading behaviour (5.14), the positions of the zeroes κ∗a(N) scale approximately with N

as Ny which we check in one case in section 6.

Given the TCSA Hamiltonian, it is possible to calculate the TCSA approximation of

many different physical quantities, but in this paper we have examined only one, namely

the spectrum of the Hamiltonian, and we describe in the next section how we use this to

identify the presence of possible RG fixed points, that is conformal defects, and attempt

to identify them.

5.3 Identification of conformal defects using TCSA

From the TCSA method, we obtain the spectrum of the Hamiltonian on a strip. The

simplest way to identify candidate conformal defects is to place the defect in the middle

of the strip and use the fact that in this case the partition function takes the special

form (2.16) and the spectrum is organised into representations of the Virasoro algebra of

central charge 2c. Consequently, we examine the TCSA results to find spectra which take

this special form and propose these as candidates for conformal defects.
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To be explicit, we consider the model on a strip of width R with conformal boundary

conditions on the two edges and the defect D in the middle. In our TCSA calculations we

will always take the boundary condition to be the same on both edges, but for the moment

we shall label them B and B′ for generality. This system can be folded into the folded

model of central charge 2c on a strip of width R/2 with a factorised boundary condition

(B,B′) on one edge and a boundary condition corresponding to the defect on the other

edge. If this defect is conformal, then the spectrum falls into representations of the Virasoro

algebra of charge 2c and

Z(B,B′);Dconformal
=
∑

h

mhχh,2c(q) , (5.19)

where q = exp(−2πL/R). This means that the spectrum falls into sets of levels separated

by integer multiples of 2π/R with distinctive multiplicities. If these are absent, then the

defect D cannot be conformal.

For the two special cases of a topological defect and a factorised defect the spectrum

takes more particular forms.

If the defect D is a topological defect then the partition function is simply that of the

original model on a strip of width R with two conformal boundary conditions, so that

Z(B,B′);Dtopological
=
∑

i

miχi,c(
√
q) . (5.20)

In this case, the spectrum falls into sets of levels separated by integer multiples of π/R,

which is half the spacing of the energy levels in the general case.

If the defect D is in fact a factorised defect of the form (2.12) then the partition

function takes the special form

Z(B,B′);Dfactorised
=
∑

a,b,i,j

(

nabN
i
BaN

j
B′b

)

χi,c(q)χj,c(q) . (5.21)

In this case, the spectrum falls into sets of levels separated by integer multiples of 2π/R

as in the general case but with typically much higher degeneracies than those of a general

conformal defect.

A further check can be obtained by moving the defect across the strip to different

angles θ. For topological defects the spectrum should be independent of θ while for purely

factorising defects F =
∑

a,b nab ||a〉〉 〈〈b || the partition function is

Z(B,B′);Dfactorised
(q; η) =

∑

a,b,i,j

(

nabN
i
BaN

j
B′b

)

χi,c

(

q
1
2η

)

χj,c

(

q
1

2(1−η)

)

, θ = η π , (5.22)

which lets us identify the coefficients nab exactly.

6 TCSA results

We consider two different systems: firstly the Ising model, as a check on our method and

confirming the results of [11]; secondly, we consider minimal models with p large for which

we take p = 10 as a typical example. Throughout this section we use the dimensionless

couplings κi as appropriate to the TCSA method.
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(a) TCSA results in M(3, 4) for α = 3π/8 plotted

against log(κ) for N = 24 and 762 states. The degen-

eracies of the energy levels at the IR fixed point are

grouped according to the representation of the c = 1

folded model into which they fall.
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(b) The spectrum of M(3, 4) at log(κ) = 0.3 as

a function of α for for π/4 ≤ α ≤ 5π/4 with

N = 24 and 762 states.

Figure 7. IR fixed points in the critical Ising model.

6.1 The critical Ising model

Using the defect TCSA method we can check the predictions of [11] as well as the accuracy

of the TCSA method. We recall that [11] predict flows of the formDσ → N(5π/4−α) where

tan(α) = κr/κl , (6.1)

As an example, we calculate the TCSA spectrum for α = 3π/8 and compare it with the

partition function at ϕ0 = 5π/4− 3π/8 = 7π/8 given in (3.7)

ZD(0)+,D(7π/8)

(

q;
1

2

)

= q
49
128
− 1

24

(

1 + q
1
4 + q + q

5
4 + 2q2 + 2q

9
4 + 3q3 + 3q

13
4 (6.2)

+q
15
4 + 5q4 + 5q

17
4 + q

9
2 + q

19
4 + 7q5 + . . .

)

.

In figure 7(a) the normalised energy differences 2(Ei − E0)/(E2 − E0) are shown against

the logarithm of the dimensionless coupling strength κ of the perturbation. With this nor-

malisation, the indicator of an IR fixed point is the existence of a state with normalised

gap 4. The only such point visible is that with log(κ) ∼ 0.3. At this point, the energy

levels visible have rearranged themselves into four distinct sets and both this arrangement

and the values of the energy gaps agree with the partition function (6.2). We conclude

that the endpoint of the flow starting at the angle α = 3π/8 in the (κl, κr) plane is indeed

the conformal defect D(5π/4 − 3π/8) = D(7π/8).

The IR fixed point is located at a finite value of the bare coupling constant and at

approximately the same distance from the origin in every direction. This means we can
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N 10 12 14 16 18 20 22

log(κ∗measured) −1.51 −1.46 −1.43 −1.40 −1.37 −1.35 −1.33

log(κ∗theory) −1.46 −1.43 −1.40 −1.38 −1.35 −1.34 −1.32

Table 1. The approximate position of the perturbative fixed point in M(10, 11) in the purely chiral

direction as a function of TCSA cut-off N .

view all the IR fixed points together by plotting the energy differences r
π (Ei −E0) against

the angle α at this fixed value of κ. Expanding the partition function (3.7) gives

ZD(0)+,D(ϕ0)

(

q;
1

2

)

= q
x2

2
− 1

24
(

1 + q2−2x + q + q3−2x + 2q2 + 2q4−2x + q2+2x + . . .
)

,

(6.3)

where x = ϕ0/π. This means that the energy gaps are straight lines as functions of ϕ0 or

α and this is exactly what can be seen in the TCSA plot (figure 7(b)). The fact that these

lines are straight also implies that κ1/κ2 is a constant along the finite-size scaling flow.

This is not expected to be the case in general, but the extra symmetry in the Ising model

allows this to happen.

This result provides a very strong indication that our identification of the RG flow

fixed points in terms of Dirichlet-type defects is correct, confirming both the calculations

of [11] and the usefulness of the TCSA method.

6.2 Minimal models with p > 3

For the minimal models M(p, p+1) with p > 3 the flow picture is different from that for the

critical Ising model, as is to be expected from the RG analysis. The proposed landscape of

flows can be seen in figure 1. In the following we illustrate the exploration of this picture

using the M(10, 11) model with TCSA.

6.2.1 Chiral perturbations

The simplest cases are the purely chiral perturbations. The spectra for these models are

both formally and numerically identical to the corresponding boundary perturbations as is

explained in section 2.4. From section 3.1 we see that the IR fixed points in the positive and

negative directions are the (2, 1) and the (1, 1) defects, respectively. These defect flows are

shown in figure 8 where the normalised energy differences are plotted against the logarithm

of the coupling strength. In the positive direction the cut-off effects drive the flow past

the first fixed point to a second one, realising the reversed version of the (1, 3) → (2, 1)

flow. Since the spectra are numerically identical to those in the boundary case, this effect

is identical to that observed for boundary flows in [10].

In the perturbative direction we can estimate the location of the TCSA fixed point as

the value of κ for which the fourth and fifth energy levels cross and this depends on N as

given in table 1. As can be seen it is very close to the approximate value predicted by the

analysis in [10] which gives κ∗ ≈ 0.1526Ny , once the different normalisation of the TCSA

perturbing field is taken into account.

– 23 –



J
H
E
P
1
1
(
2
0
0
9
)
0
5
7

-4 -3 -2 -1 0 1 2

0

2

4

6

8

(a) Positive direction: (1, 2) → (2, 1) L99 (1, 3).
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(b) Negative direction: (1, 2) → (1, 1).

Figure 8. M(10, 11): chiral flows. We show the normalised energy levels plotted against log(κ)

with N = 22, 1794 states.

6.2.2 The third quadrant: κl < 0, κr < 0

Next we turn to the third quadrant of the plane of the couplings in figure 1. We have

searched thoroughly for fixed points in the domain of convergence of TCSA and found a

single fixed point F , which is in the diagonal direction κl = κr < 0.

As discussed in section 5.1, the TCSA Hamiltonian for κl=κr is block diagonal and

the flows for the two sectors are shown in figure 9. We find that for large κ the spectrum

approaches an IR fixed point for which the eigenstates in each sector separately fit into

representations of the folded model.

Combining the two sectors is a non-trivial task, because they have different effective

cut-offs. This means that they have different values for the non-universal boundary en-

ergy and different re-scalings of the couplings κ and r so that the two sectors cannot be

directly compared. The usual perturbative renormalisation based on minimal subtraction

or analytic continuation cannot be implemented within the TCSA framework, but it is

possible to define a prescription for the relative shift of the sectors. Going from a TCSA

cut N = 2n to N = 2n+ 1 the even energy levels are not affected, because the new states

in the Hilbert space belong to the odd sector. Similarly, raising the cut from N = 2n + 1

to N = 2n + 2 the odd levels do not change. One can define, say, the values of the even

eigenvalues at the odd cut N = 2n + 1 as

eeveni (2n + 1) =
1

2
(eeveni (2n) + eeveni (2n+ 2)) . (6.4)

The justification of this prescription is provided by its application to the fixed point F

where it yields the spectrum shown in figure 9. It corresponds to a partition function of
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(b) Odd sector.

Figure 9. M(10, 11): diagonal flow in the negative direction. In the main figure, the scaled energy

gaps for both sectors are shown, the odd sector with TCSA cut 19 and the even sector given by

the combination of cuts 18 and 20 as detailed in the text. The small sub-figures show the even and

odd sectors separately.

the form (5.22) with η = 1/2, namely

ZF (q;
1

2
) =

9
∑

r=1

χr,1(q)
2 , (6.5)

although we could not identify all the components as some of them enter only at high level.

This implies that

the IR fixed point in the negative diagonal direction is the factorising defect

F =

p−1
∑

r=1

||r, 1〉〉〈〈r, 1|| .
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(a) Round plot.
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(b) (2, 1) − φ13,33 flow.

Figure 10. M(10, 11): comparison between the (2, 1) − φ13,33 flow and the round plot. The

absence of states of scaled energy 2 and 4 means that there is no indication of a conformal fixed

point between the points α = π/2 and α = π. The different slopes of the lines is a result of the

different renormalisations of the function r(κ) in the two systems.

We found the same result for other minimal models and we checked also that the depen-

dence of the spectrum on the position of the defect is as it is expected and given by (5.22).

Note that the defect F is of the form of (3.5) with s = s′ = 1.

6.2.3 The second and fourth quadrants: κl and κr of opposite signs

For different signs of the couplings κl and κr we found strong indications of a fixed point

far from the perturbative region which appears to be a deformation of the (ff) fixed point

in the Ising model; we call this conformal defect (ff)′. However, since this is far from

the perturbative region, there is no necessity that this be reachable by a finite-size scaling

flow from the defect D, and indeed we believe that all RG flows starting at D in this

quadrant end up at the identity defect I. This is the result predicted by the simple model

in section 7 and to test it we explored the quadrant by making “round plots” similar to

the Ising model, that is plots of the spectrum as functions of α at various fixed κ for the

Hamiltonian (5.6). In figure 10(a) the weight differences are plotted against the angle α,

defined in the same way as for the Ising model in (6.1), with log(κ) interpolating between

the approximate fixed point values log(κ∗)=−1.4 at θ = π/2 and log(κ∗) = −0.4 at θ = π.

The plot does not feature any fixed points but looks like a flow interpolating the chiral

fixed points (2, 1)→ (1, 1) located on the vertical and horizontal axes. This picture can be

compared with an actual flow starting from the defect (2, 1). As can be seen in (4.9), in

first order perturbation theory the field φ transforms into the relevant field φ(13)(33) along

the flow (1, 2) → (2, 1) triggered by φ̄. It is possible to study the flow starting from the

defect (2, 1) generated by the non-chiral perturbation φ(13)(33) in TCSA; some details of

the method are given in appendix C. For negative values of the perturbation the flow is

shown in figure 10(b). It looks very much the same as the round plot, as shown in the

schematic figure 12(a).

This tells us that:

All RG flows starting from the defect D with κl and κr of opposite signs end at the

identity defect I, and the boundary of this space of flows is an RG flow from D(2,1) to I.
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Figure 11. M(10, 11): diagonal flow in the positive direction, even sector, scaled energy gaps vs

log(κ) for a strip of width π truncated at level 20; the boxed regions are shown enlarged in the two

smaller figures. The energy levels at the fixed point can grouped into representations of the folded

model and are labelled ml where m is the degeneracy and l is the label of the representation.

6.2.4 The first quadrant κl > 0, κr > 0

Based on perturbation theory we expect a non-topological fixed point C in the diagonal

direction κl = κr > 0. We can apply the tools used in the previous cases for exploring

the flows in the first quadrant. In figure 11 the normalised energy differences are plotted

against the logarithm of the coupling strength in the positive diagonal direction for the

even sector. We find multiple degeneracies at log(κ) ∼ −1.2 indicating the presence of a

conformal fixed point. One feature of this fixed point characteristic of a perturbative fixed

point is that the energy levels stay close to their UV values, so that lines appear to split

apart initially then to rejoin and intersect with multiple degeneracies at κ∗.

As shown in the magnified plots of the regions around the fixed point, the states

approximately group into representations of the folded model with the correct multiplicities.

An analogous pattern of line crossings is also seen in the odd sector.
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(a) The conjectured exact flow from D(2,1) to I =

D(1,1) and the set of flows starting from D(1,2) for

various values of α in the second quadrant.
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(b) The conjectured exact flow from D(2,1) to C

and the set of flows starting from D(1,2) for various

values of α in the first quadrant.

Figure 12. The conjectured flows in the first and second quadrants.

From the perturbative picture we also expect all flows starting with κl > 0, κr > 0 to

flow to C and the boundary of this space of flows to be be a pair of flows starting from the

two D(2,1) defects generated by φ(13;33) for α > π/4 and by φ(33;13) for α < π/4. We have

again checked this by comparing “roundplots” in the two-parameter space at fixed κ and

varying α with the one-parameter TCSA flows D(2,1) +φ(13,33) and D(2,1) +φ(33,13), finding

again qualitative agreement and support for the picture shown in figure 12(b).

As the level p of the model M(p, p + 1) is reduced, the TCSA results become less

convincing as the new conformal fixed point moves further away from the UV fixed point.

The last model for which there is convincing evidence of the new defect C is M(5, 6); in

model M(4, 5) the triple line intersection seen in figure 11(a) is no longer seen in TCSA

at the truncation levels we have been able to achieve. It is possible that increasing the

truncation level would show signs of a conformal fixed point, or the position of the conformal

fixed point may have moved a large distance; at the moment we cannot tell.

7 Conclusion

For p ≫ 3, the perturbative analysis carried out in section 4 and the numerical work in

section 6 suggests the pattern of flows shown in figure 13(b). We conclude that for p≫ 3

there is at least one IR fixed point which is a conformal defect that is neither topological nor

just a sum over conformal boundary conditions, namely the one in the κr = κl > 0 direction.

The Ising model M(3, 4) behaves differently form the other minimal models and is

treated separately in section 6.1, with the pattern of flows 13(a). For p = 3, the fixed

points that have been identified for large p all still remain, but are now just particular

points in a continuum.

For p small but greater than 3, the situation is not so clear-cut. We are still not sure

exactly how the fixed-points approach the c = 1/2 continuum, which in part is due to the

numerical inaccuracies of the TCSA method.
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defect D(1,2) showing the 6 IR fixed points for

M(p, p+ 1) with p large.

Figure 13. Finite-size scaling flows.

The one-loop beta functions as discussed in section 4 predict the perturbative fixed

points that we find with the TCSA analysis. It is tempting to try to extend this analysis

to higher loop order to see if they confirm the RG flow structure we suggest in this paper.

As a starting point, we consider the Ising model and then the changes that are present

in the higher minimal models. Given the symmetries of the Ising model, the absence of

three-point couplings and the continuum of fixed points, the RG flows away from the D

defect can be modelled by the beta functions

(

κ̇l
κ̇r

)

=
1

2

(

κl
κr

)

− d(κ2
l + κ2

r)

(

κl
κr

)

, (7.1)

where d is a scheme-dependent constant. This has the required O(2) symmetry and a ring

of fixed points at κ2
l + κ2

r = 1/(2d). The minimal models Mp,p+1 with p > 3 have non-zero

three point couplings and so the simplest change to these beta functions to incorporate

these is
(

κ̇l
κ̇r

)

= y

(

κl
κr

)

− c
(

κ2
l

κ2
r

)

− d(κ2
l + κ2

r)

(

κl
κr

)

. (7.2)

This breaks the degeneracy and (for dy > 0) has six non-trivial fixed points with the same

pattern of flows that we have found, which is additional evidence in favour of the pattern

we propose.

There are also various physical quantities which we would like to calculate using the

TCSA method which for various reasons have proved intractable, such as the expectation

values of T and T̄ (which would give a better test of a conformal defect than the examination

of the spectrum) or the reflection and tranmission coefficients defined in [26].
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Finally, it appears likely that a qualitative description of the space of defects and defect

flows can be found from the microscopic RSOS model description of the minimal models,

something we plan to address in the future.
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A Defect operators commuting with D(r,1)

Let δ(s, s′) be 1/2 if s = s′ = p+1
2 and 1 otherwise, as in the definition of F s|s

′

in (3.4). To

see that F s|s
′

commutes with the topological defects D(r,1) one simply computes

D(r,1)F
s|s′ =

p−1
∑

t,u=1

N
(u,1)

(r,1)(t,1)D(u,1)||1, s〉〉〈〈1, s′ ||D(t,1) · δ(s, s′)

=

p−1
∑

u=1

D(u,1)||1, s〉〉〈〈1, s′ ||D(u,1)D(r,1) · δ(s, s′) = F s|s
′

D(r,1) .

(A.1)

To establish the decomposition (3.5) of a conformal defect that commutes with D(2,1)

(and hence with all D(r,1)) it is enough to show that we can find constants m
s|s′

a in (3.6)

such that
(

C, ||a〉〉〈〈b ||
)

=
(

F, ||a〉〉〈〈b ||
)

for all a, b ∈ Ip . (A.2)

Because of the identity ||r, s〉〉 = ||p− r, p + 1− s〉〉 it suffices to verify this for factorising

defects of the form ||x, v 〉〉〈〈y, v′ || with v ≤ p+1
2 and v′ ≤ p+1

2 .

For the left hand side of (A.2) we find

(

C, ||x, v 〉〉〈〈y, v′ ||
)

=
(

CD(y,1), ||x, v 〉〉〈〈1, v′ ||
)

=
(

C,D(y,1)||x, v 〉〉〈〈1, v′ ||
)

(A.3)

=

p−1
∑

a=1

N
(a,1)

(y,1)(x,1)

(

C, ||a, v 〉〉〈〈1, v′ ||
)

.

To reproduce this result with
(

F, ||x, v 〉〉〈〈y, v′ ||
)

we will distinguish four cases, namely

whether v and v′ are less or equal to p+1
2 , respectively. Of course, the three cases where

either v or v′ are equal to p+1
2 can occur only for p odd. We will abbreviate

q =
p+ 1

2
. (A.4)
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For m
s|s′
a we make the ansatz

ms|s′
a = µ(s, s′) ·

(

C, ||a, s〉〉〈〈1, s′ ||
)

, (A.5)

where µ(s, s′) = 1
2 if at least one of s, s′ is equal to q, and µ(s, s′) = 1 otherwise. The m

s|s′
a

have the property that for all s, s′,

mq|s′
a = m

q|s′

p−a and ms|q
a = m

s|q
p−a . (A.6)

The first equality is an immediate consequence of ||a, q 〉〉 = ||p − a, q 〉〉, while for the second

one we need to commute the defect operators D(p,1) and C and use 〈〈p, q || = 〈〈1, q ||,

m
s|q
p−a =

1

2

(

C,D(p,1)||a, s〉〉〈〈1, q ||
)

=
1

2

(

CD(p,1), ||a, s〉〉〈〈1, q ||
)

(A.7)

=
1

2

(

C, ||a, s〉〉〈〈1, q ||D(p,1)

)

=
1

2

(

C, ||a, s〉〉〈〈1, q ||
)

= ms|q
a .

From their definition it is easy to check that the factorising defects F s|s
′

obey the

identities

F p+1−s|p+1−s′ = F s|s
′

, D(a,1)F
p+1−s|s′ = D(p−a,1)F

s|s′ . (A.8)

This allows us to restrict the range of the s and s′ summation in (3.6) to s, s′ ≤ q. We will

now establish the equality (A.2) in the four cases.

i) v, v′ < q: then

(

F,||x, v 〉〉〈〈y, v′ ||
)

=

⌊q⌋
∑

s,s′=1

p−1
∑

a,t=1

ms|s′

a δ(s, s′)
(

D(a,1)D(t,1)||1, s〉〉〈〈1, s′ ||D(t,1), ||x, v 〉〉〈〈y, v′ ||
)

=

⌊q⌋
∑

s,s′=1

p−1
∑

a,t,u=1

ms|s′

a N
(u,1)

(a,1)(t,1)δ(s, s
′)
(

||u, s〉〉〈〈t, s′ ||, ||x, v 〉〉〈〈y, v′ ||
)

=

p−1
∑

a

(

C, ||a, v 〉〉〈〈1, v′ ||
)

N
(x,1)

(a,1)(y,1) , (A.9)

where in the last step we used that since s, v < q, ||u, s〉〉 = ||x, v 〉〉 if and only if

u = x and s = v, and similarly for 〈〈t, s′ || and 〈〈y, v′ ||. Since v, v′ < q this implies

also δ(s, s′) = 1. The above expression is equal to (A.3) by the symmetries of the

minimal model fusion rules.

ii) v < q, v′ = q: then

(

F, ||x, v 〉〉〈〈y, q ||
)

=

⌊q⌋
∑

s,s′=1

p−1
∑

a,t,u=1

ms|s′
a N

(u,1)
(a,1)(t,1)δ(s, s

′)
(

||u, s〉〉〈〈t, s′ ||, ||x, v 〉〉〈〈y, q ||
)

=

p−1
∑

a=1

mv|q
a δ(v, q)

(

N
(x,1)

(a,1)(y,1) +N
(x,1)

(a,1)(p−y,1)

)

=

p−1
∑

a=1

mv|q
a N

(x,1)
(a,1)(y,1)

+

p−1
∑

a=1

m
v|q
p−aN

(x,1)
(a,1)(y,1)

, (A.10)

where we used that N
(x,1)

(a,1)(p−y,1) = N
(x,1)

(p−a,1)(y,1). Since m
v|q
p−a = m

v|q
a , the factor of 1

2

in (A.5) ensures that both sums combine to give (A.3).
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iii) v = q, v′ < q: this case works along the same lines.

iv) v = q, v′ = q: then

(F, ||x, q 〉〉〈〈y, q ||) =

⌊q⌋
∑

s,s′=1

p−1
∑

a,t,u=1

ms|s′
a N

(u,1)
(a,1)(t,1)δ(s, s

′)
(

||u, s〉〉〈〈t, s′ ||, ||x, q 〉〉〈〈y, q ||
)

=

p−1
∑

a=1

mq|q
a ·

1

2
·
(

N
(x,1)

(a,1)(y,1)+N
(x,1)

(a,1)(p−y,1)+N
(p−x,1)

(a,1)(y,1) +N
(p−x,1)

(a,1)(p−y,1)

)

=

p−1
∑

a=1

mq|q
a

(

N
(x,1)

(a,1)(y,1)+N
(x,1)

(a,1)(p−y,1)

)

(A.11)

where we used that N
(p−x,1)

(a,1)(p−y,1) = N
(x,1)

(a,1)(y,1). The rest of the argument is as in ii).

B The renormalisation group and finite-size scaling relations in TCSA

In this section we derive the form of the finite-size scaling flow in TCSA given in equa-

tions (5.15)–(5.17). We start from the three assumptions in section 5.2: if κi(N, t) are the

TCSA coupling constants along a finite-size scaling flow parametrised by t at cut-off N ,

then we assume

κi(∞, t) = eyt κ0
i , (B.1)

−N ∂κi
∂N

(N, t) = β̃i(κ(N, t);N) , (B.2)

β̃i(κ;N) = Nyγi(κN
−y) . (B.3)

Firstly we remove the expected t dependence from κi(Ne
t, t) and define

σi(N, t) = e−ytκi(Ne
t, t) . (B.4)

This satisfies the differential equation

−N ∂

∂N
σi(N, t) = Nyγi(N

−yσ) , (B.5)

with initial conditions

σi(∞, t) = κ0
i . (B.6)

Since both the initial conditions and the differential equation are independent of t, the

solution is also independent of t and we find that

σi(N, t) = fi(κ
0
j ;N) . (B.7)

Substituting this into (B.4) we find our first result,

κi(Ne
t, t) = eytfi(κ

0
j ;N) = eytκi(N, 0) . (B.8)
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Rescaling N in this equation gives the second result

κi(N, t) = eytκi(Ne
−t, 0) . (B.9)

Finally, differentiating this with respect to t at fixed level N0 gives

∂

∂t
κi(N0, t) = yeytκi(N0e

−t, 0)− eytN0e
−t ∂κi
∂N

(N0e
−t, 0)

= yκi(N0, t) + eytβ̃i(κi(N0e
−t, 0);N0e

−t)

= yκi(N0, t) +Ny
0 γi(N

−y
0 eytκi(N0e

−t, 0))

= yκi(N0, t) + β̃i(e
ytκi(N0e

−t, 0);N0)

= yκi(N0, t) + β̃i(κi(N0, t);N0)

= βi(κ(N0, t);N0) . (B.10)

C Some details of the TCSA algorithm

In order to calculate the matrix elements of the perturbations one needs to know the

functional form of the 3pt function of primary fields on the upper half plane. If the

perturbing operator is chiral it is simply

〈A|φh(z)|B〉 = C zhA−h−hB . (C.1)

If the perturbation is non-chiral then the correlation function is more complicated, but if

the states A or B belong to the representation (1, 2) or (2, 1) the null vector equations can

be used to deduce the form of the correlator.

The equation in the model M(p, q) for B is

〈A|φ(z, z̄)(L2
−1 − tL−2)|B〉 = 0 (C.2)

where t = p/q if B = φ1,2 and t = q/p if B = φ2,1. Commuting the Ln’s past φ, changing

to polar coordinates (r, θ) and using

(hA − hB)〈A|φh,h̄(r, θ)|B〉 = 〈A|[L0, φh,h̄(r, θ)]|B〉 =
(

h+ h̄+ r
∂

∂r

)

〈A|φ(r, θ)|B〉 (C.3)

one arrives at the second order differential equation

[

sin2 θ ∂2
θ + (1 + ∆− t) sin 2θ ∂θ + (C.4)

∆(∆ + 1) cos2 θ −∆ sin2 θ − t(∆ cos 2θ + h e−2iθ + h̄ e2iθ)
]

〈A|φh,h̄(r, θ)|B〉 = 0

where ∆ = hA − h− h̄− hB .

The null vector equation for A reads

〈(L2
−1 − tL−2)A|φ(z, z̄)|B〉 = 0 . (C.5)
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With the same steps this can be converted to the equation
[

sin2 θ ∂2
θ + 2 sin θ

(

(1 + 2h + 2h̄− t−∆) cos θ + 2i(h− h̄) sin θ
)

∂θ +

e2iθ
(

4h2 − h(3t+ 2∆− 2)
)

+ e−2iθ
(

4h̄2 − h̄(3t+ 2∆ − 2)
)

+

1

2
∆(∆ + 2t− 2) cos(2θ) +

1

2
(4h−∆)(4h̄ −∆)

]

〈A|φh,h̄(r, θ)|B〉 = 0 . (C.6)

If it is not true that hA = hB and h = h̄ at the same time the equations (C.4) and

(C.6) can be combined to obtain a first order equation. In case hA = hB and h 6= h̄ one gets

[

∂θ + (1 + h+ h̄− 2t) cot θ + i(h− h̄)
]

〈A|φh,h̄(r, θ)|B〉 = 0 (C.7)

having the solution

〈A|φh,h̄(r, θ)|B〉 = C r−h−h̄e−i(h−h̄)θ sin θ−1+2t−h−h̄ = (C.8)

= C̃z(1−2t−h+h̄)/2z̄(1−2t+h−h̄)/2(z − z̄)−1+2t−h−h̄ . (C.9)

The matrix elements of the perturbation in the basis (5.3) can be calculated using the

relations

〈L−nA|φ(z, z̄)|B〉 =

n
∑

k=−1

(

n+ 1

k + 1

)

(

zn−k〈A|Lkφ(z, z̄)|B〉+ z̄n−k〈A|L̄kφ(z, z̄)|B〉
)

+

〈A|φ(z, z̄)|LnB〉 , (C.10)

〈A|φ(z, z̄)|L−nB〉 = −
∞
∑

k=−1

(−n+ 1

k + 1

)

(

z−n−k〈A|Lkφ(z, z̄)|B〉+z̄−n−k〈A|L̄kφ(z, z̄)|B〉
)

+

〈LnA|φ(z, z̄)|B〉 . (C.11)

For φ left chiral the terms containing z̄ are not present. Applying these relations iteratively

every matrix element becomes a sum of correlators of the form

〈A|Lk−1L̄
l
−1φ(z, z̄)|B〉 A,B primary. (C.12)

The action of L−1’s translates to derivatives of (C.1) or (C.9) with respect to z and z̄.

D Position invariance of the spectrum for a chirally perturbed defect

Let H(θ) be the Hamiltonian in (5.2) for the perturbation by a single chiral field φh,0,

H(θ) = H0 +HI(θ) where H0 =
π

R

(

L0 −
c

24

)

, HI(θ) = λl

( π

R

)h
eihθ φh,0(e

iθ) . (D.1)

We will show that

H(θ) = eiθL0H(0)e−iθL0 (D.2)

by verifying it on matrix elements. Clearly, eiθL0H0e
−iθL0 = H0, so that it is enough to

show HI(θ) = eiθL0HI(0)e
−iθL0 . On the one hand, from (5.8) we have, in the notation of

that section,

〈vi|HI(θ)|vj〉 = λl

( π

R

)h
eihθ C eiθ(∆i−h−∆j) , (D.3)
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where the constant C is given by C = 〈vi|φh(1)|vj〉. On the other hand,

〈vi|eiθL0HI(0)e
−iθL0 |vj〉 = eiθ(∆i−∆j)〈vi|HI(0)|vj〉 = eiθ(∆i−∆j)λl

( π

R

)h
〈vi|φh,0(1)|vj〉

(D.4)

These two expressions coincide. We see that H(θ) and H(0) are related by a similarity

transformation, and hence have the same spectrum. For the application to TCSA it is

important to note that the operator eiθL0 commutes with the projection PN to the truncated

Hilbert space, so that also

PNH(θ)PN = eiθL0PNH(0)PN e
−iθL0 . (D.5)

Thus even in TCSA, the truncated Hamiltonians for different positions θ of the chirally

perturbed defect on the strip have exactly the same spectrum. For a perturbation by an

anti-chiral field φ0,h, the argument is the same, except that the similarity transformation

in this case is H(θ) = e−iθL0H(0)eiθL0 .
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